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Infinite Volume

We see the hadronic computation as a 4-pt function in position space

jµ(x)jν(y)jσ(z)jλ(0) = (ψ̄γµψ)(x)(ψ̄γνψ)(y)(ψ̄γσψ)(z)(ψ̄γλψ)(x0)

And the QED part as something that can be done in continuum

4 2 + 2 3 + 1 2 + 1 + 1 1 + 1 + 1 + 1
6 3 8 6 1

Table: Number of contractions needed for each type of diagram
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Infinite Volume

The three connected contributions we wish to compute. Corresponding to
contractions 1,2, and 3. From top left, top right, and bottom.
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Infinite Volume

aµ =
−me6

3

∫
d4y

∫
d4x

∫
d4z L(i)

ρσ:µνλ(x , y)zρ〈jµ(x)jν(y)jσ(z)jλ(0)〉

aµ =
−me6

3
2π2

∫
dy |y |3

∫
d4x

∫
d4z L(i)

ρσ:µνλ(x , y)zρ〈jµ(x)jν(y)jσ(z)jλ(0)〉︸ ︷︷ ︸
f (|y |)

Selecting diagram 2 as our reference (Π
(4)
µνσλ(x , y , z , 0)) we can perform a

change of variables to rewrite the connected part of the integral:

a(c)
µ =

−me6

3
4π2

∫
d |y ||y |3

∫
d4x

[
(L(i)

ρσ;µνλ(x , y) + L(i)
ρσ;νµλ(y , x)− L(i)

ρσ;λνµ(x , x − y))

∫
d4z zρΠ

(4)
µνσλ(x , y , z , 0)

+L(i)
ρσ;λνµ(x , x − y)xρ

∫
d4z Π

(4)
µνσλ(x , y , z , 0)

]
,
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Infinite Volume

The three 2 + 2 diagrams that contribute to the HLBL (numbered 1,2,3
from top left, top right, and bottom).

1
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Infinite Volume

Defining

Π(2)
µν(x , y) = Tr[S̄(x , y)γµS(x , y)γν ]− 〈Tr[S̄(x , y)γµS(x , y)γν ]〉

The 2+2 contribution to aµ can be written as

a(2+2)
µ =

−me6

3
2π2

∫
dy |y |3

∫
d4x L(i)

ρσ:µνλ(x , y)

∫
d4z

zρ

(
Π(2)
σν(z , y)Π

(2)
µλ(x , 0) + Π(2)

µν(x , y)Π
(2)
σλ(z , 0) + Π(2)

σµ(z , x)Π
(2)
νλ(y , 0)

)
The third diagram is unpleasant so we rewrite...

a(2+2)
µ =

−me6

3
2π2

∫
y

dy |y |3
∫
x

d4x[(
L(i)
ρσ:µνλ(x , y) + L(i)

ρσ:νµλ(y , x)

)
Π

(2)
µλ(x , 0)

∫
z

d4z zρΠ(2)
σν(z , y)

+ L(i)
ρσ:µνλ(x , y)Π(2)

µν(x , y)

∫
z

d4z zρΠ
(2)
σλ(z , 0)

]
,
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A brief QED kernel interlude

Have several choices for subtracted kernels [Blum et.al ’17] all built from
the infinite volume L(0) suppressing indices as they are all the same!

L(1)(x , y) = L(0)(x , y)− 1

2
L(0)(x , x)− 1

2
L(0)(y , y)

L(2)(x , y) = L(0)(x , y)− L(0)(x , 0)− L(0)(0, y)

L(3)(x , y) = L(0)(x , y)− L(0)(x , x) + L(0)(0, x) + L(0)(0, y)

Sanity check:

Test different kernels on the infinite volume lepton-loop

,
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A brief QED kernel interlude
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Figure: Lepton loop integrands for our various QED kernels
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A brief QED kernel interlude

The broadening of the integrand for L(3/2) is concerning
→Typical lattice dimensions are of the order of a few fm.

The large peak of the integrand for L(1/0) at small |y | is concerning
→This could lead to significant discretisation effects

Question

Can we keep the benefits of the L(2) subtraction whilst making the
integrand peak at low |y |?

,
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A brief QED kernel interlude

The broadening of the integrand for L(3/2) is concerning
→Typical lattice dimensions are of the order of a few fm.

The large peak of the integrand for L(1/0) at small |y | is concerning
→This could lead to significant discretisation effects

Question

Can we keep the benefits of the L(2) subtraction whilst making the
integrand peak at low |y |?

Yes! We are practically free to do whatever we want to terms like
L(x , 0) as they don’t contribute to the integral

L(2:λ)(x , y) = L(0)(x , y)− ∂(x)
µ

(
xαe
−λm2

µx
2/2
)
L

(0)
ρσ:ανλ(0, y)

− ∂(y)
ν

(
yαe
−λm2

µy
2/2
)
L

(0)
ρσ:µαλ(x , 0)

λ is a dimensionless tuneable parameter λ→ 0 is L(2) and λ→∞ is L(0)

,
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Figure: Lepton loop integrands for our various QED kernels
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Figure: Lepton loop integrands for some choices of λ
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Lattice Implementation

I Integrals become discrete sums
I Discretisation effects
I Finite volume effects

I CLS nf = 2 + 1 Wilson-Clover ensembles with open temporal
boundary and 4 local currents
I Focus on SU(3)f symmetric-point ensembles for fully-connected and

2+2 contributions
(mπ = mK ≈ 416 MeV, a = 0.0864(11) fm, mπL = 5.8)

I Point sources along direction (0, 2, 2, 2)

1. Two sources gives both +y and −y
2. Self averages per |y | of L/2 exploiting periodicity in spatial directions

I Also investigate (3, 1, 1, 1) direction for volume effects

1. Larger |y | available but fewer self-averages

,
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Lattice Implementation

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5

|y| [fm]

-6e-10

-4e-10

-2e-10

0

2e-10

4e-10

6e-10

8e-10

1e-09

f(
|y

|)
 [

fm
-1

]

λ = 1.0
λ = 0.8
λ = 0.4
λ = 0.0

Figure: Fully-connected integrand for direction (0, 2, 2, 2) (points shifted for
clarity)
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Lattice Implementation
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Figure: Fully-connected contribution to aHLBL
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Figure: Integrated result up to a cut-off |y |Max. along direction (3, 1, 1, 1)

,

Renwick Hudspith - Progress in aHLBLµ from the lattice



Progress in the Mainz effort to compute aHLBL
µ from the lattice

Lattice Implementation

Compute our finite-volume corrected result at some yc where the
integrand is positive

aµ = alattice
µ (|y | < yc) + aΠ0

µ (∞, |y |)− aΠ0
µ (L, |y | < yc)︸ ︷︷ ︸

FSCorr

L/a Direction a [fm] yC [fm] FSCorr aµ × 1011

32 (0, 2, 2, 2) 0.0864 1.79 20.5 102.5(1.1)(5.1)
32 (3, 1, 1, 1) 0.0864 3.0 8.8 79.7(4.4)(2.2)

32 (3, 1, 1, 1) 0.0643 2.5 22.9 97.0(4.0)(5.7)
48 (3, 1, 1, 1) 0.0643 3.0 5.1 97.2(4.2)(1.3)

Table: Fully-connected, finite-size-corrected SU(3)f symmetric-point results
with λ = 0.4

We achieve consistent finite-size-corrected results for our finest lattice
,
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(b) λ = 0.4
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(c) λ = 0.8

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2 2,25 2,5

|y| [fm]

-1e-09

-8e-10

-6e-10

-4e-10

-2e-10

0

2e-10

4e-10

6e-10

8e-10

1e-09

f(
|y

|)
 [

fm
-1

]

Connected
2+2

(d) λ = 1.0
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Figure: Preliminary Integrated 3+1 contribution from an ensemble with light
pion mass, and direction (3,1,1,1)
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Summary

I It is possible to have more choice for our QED kernel

I By considering different λ we can make the integrand narrower

1. This helps to reduce finite volume effects
2. This significantly reduces noise in the 2+2 contribution

I We believe that we have finite-size effects under control for the
symmetric ensembles

I The error in the measurement is currently dominated by the 2+2
contribution

I The 3 + 1 contribution appears small and consistent with zero within
our statistical resolution

,
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